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Overview

Scientific Data Manager (SciDM) is a DBMS designed for applications that require:
operating quickly with heavy data sets over the network -
on standard inexpensive hardware, maintenance-free -
through a light and easy-to-use programming interface -
using multiple platforms and various programming languages.

SciDM provides:

- Unmatched performance: 
retrieving 1,000,000 data objects in 0.9 seconds 
updating 1,000,000 data objects in 2.1 seconds
creating 1,000,000 data objects in 37 seconds
deleting 1,000,000 data objects in 21.5 seconds
processing 1,000,000 select queries in 5.2 seconds
handling 10,000 client sessions simultaneously -

over the network1, running on standard hardware2, on a database preloaded with 540 Gigabytes
of data3. 

- Strong reliability: All features were tested in the real-world applications that intensively operate
with huge volumes of data. These applications include genomic data management, literature
databases, document management, and bug tracking.

- Truly unlimited storage:  limited by hardware only. The largest instance of SciDM-managed
database we worked with held 12.5 Terabytes. The storage is theoretically limited to 2 48 objects;
each object can contain up to 2 billion data attributes; each data attribute can contain up to 2 63

bytes.

- Reach data management capabilities at an unprecedented speed. It uses an object–relational
model for data representation and provides methods for storing, retrieving, and deleting data
objects, for sequential and indexed access and for dynamic data structure discovery. Along with
traditional indexing by the entire attribute contents, SciDM provides ‘context’-style indices by
individual words in the stored texts. 

- Structured framework for data processing: formalized in terms of particular application fields.
It  makes  SciDM  highly  suitable  for  research  and  prototyping,  and  also  simplifies  the
development by removing traditional data translation layer between the application and DBMS
and bringing structured data directly into the processing modules.

- Interoperability over various platforms, operating systems and programming languages through
the  use  of  CORBA as  a  network  transport.  CORBA delivers  structured  data  in  constructs
natural  for  the  target  programming  language,  creating  a  friendly  and  light  programming
model.

-  Security model with object–level protection. The access rights are controlled individually for
every object. 

1 TCP/IP over Gigabit Ethernet
2 AMD Athlon 7750 Dual-Core CPU (2.7 GHz), 4Gb DDR2 RAM, 5x1Tb SATA2 Hard drives (RAID5)
3 The particular table used for benchmarking already contained 20,000,000 records.
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- Among other features of SciDM there are flexible object structure, allowing dynamic addition of
new attributes to existing objects; integrated set management, allowing both persistence and
server-side  operations  for  objects  sets;  data  integrity  support through locking  and object
subordination.

SciDM server  can  be  viewed as  middleware  between  CORBA-interface,  reflecting  the
structure of the client’s objects, and data storage back-end. Current production version of SciDM is
based on Sequiter’s CodeBase,  combined with a proprietary storage manager  (EMBEDB).  The
EMBEDB  have  been  specifically  designed  to  overcome  traditional  volume  limitations,  and
provides a highly efficient storage of practically unlimited amounts of data in a maintenance-free
mode. A reference implementation of SciDM that uses ORACLE as data storage back-end is also
available. 

Motivation

SciDM project was started as an attempt to build a data-handling layer for a suite of DNA
sequence analysis applications. Commercial DBMS systems failed because they could not fulfill
two major requirements: 1) data had to be loaded in a finite time and 2) massive amounts of data
had to be quickly retrievable. The number of DNA sequences in the public GenBank database is
roughly 150 million. One of the simplest but typical tasks is comparing of a novel sequence to the
already  known  ones.  It  involves  retrieving  many  (or  all)  of  the  records,  passing  them  to  a
comparison  program,  and  storing  back  the  produced  output.  Widely  used  DNA  comparison
algorithms  are capable  of  processing  the  entire  GenBank  in  the  range  of  second  to  minutes.
Retrieving such amount of data from a conventional DBMS would take 2 to 4 orders of magnitude
longer on conventional hardware. 

Such slowness is, indeed, reasonable. The primary market for the commercial DBMSes is
financial or material databases. Even if the database serves the banking system with a million of
customers, and every customer makes ten transactions per day (which is unlikely), it comes to an
average of 10*1,000,000 / 24*60*60=116 transactions per second. We wanted 10,000,000 records
to be retrieved in the time lesser then 5 minutes, which requires a speed of 10,000,000 / 5*60 =
33,333 transactions per second – 286 times more.

Thus, commercial DBMSes are not designed for and typically not used for applications
requiring  very  high  data  exchange  rates.  Benchmark  demonstrations  of  commercial  DBMSes
employ extreme hardware and require substantial support of DBMS administrators and tuners. In
normal operating conditions they do not demonstrate their posted speed figures. 

There are a few major bottlenecks that impose limitations on the DBMS operating speed.
First is the network transfer. TCP stack on Linux, Windows or Mac has a limited throughput of
about 1000 – 1500 data packets per second. If data objects (or records) are transferred one by one,
there is no chance to transfer more than a half of this number (half because for each record sent to a
client  the  server  needs  a  confirmation  of  receiving).  Some  commercial  DBMSes  offer  special
operations for transferring many objects per transaction. For example, ORACLE has array methods
available through Oracle Call Interface. These methods, however, are far from industrial standard:
they require extreme programming efforts for use; besides, and are poorly documented and fragile. 

Other bottlenecks are related to transaction safety and journaling. Every piece of data in
commercial DBMSes is written to a database at least three times: into a data store, into a rollback
log,  and  into  a  journal  (transaction  log)  after  the  transaction’s completion.  This  multiplies  the
number  of  disk accesses,  increases the  sparseness of the data  and inflates  the  storage volume.
Journaling provides the ability to roll back to a state in which the database was an arbitrary time
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ago. This ability is rarely needed for non-financial applications. The transaction/rollback control
provides data integrity in case of hardware failure. An alternative method for supporting integrity is
the use of external tools to find and fix desynchronized pieces of data. Hardware failures happen
rear enough to afford spending time on running such tool  after  a failure instead of continuous
slowing the data access by (at least) the factor of two.

Along  with  the  speed,  the  needs  of  biological  data  analysis  posted  a  whole  set  of
requirements not satisfied by traditional DBMSes. A major one is that the data management system
had to serve the research needs, allowing for fast prototyping. It was desirable to access the data as
if it was not persistent somewhere on the server, but available locally within a processing program.
Among other requirements were object-level security, bindings to both production (C/C++, JAVA)
and  prototyping  (Perl,  Python)  languages,  availability  on  multiple  platforms  (Linux,  Solaris,
Win2K, Mac), and operating over a LAN and Internet.

It also has to be pointed that high volumes of data create heavy problems with commercial
databases. Their handling requires careful planning and continuous effort of database administrator.
For the research environment, it is merely impossible to do such planning, as there is no possibility
to estimate the volume of particular tables upfront. A system that supports research tasks has to
work in  maintenance-free  mode  with relatively heavy data  load,  assuming the continuous disk
space is available, and should not degrade in performance as it accumulates more data. 

There  are  solutions  for  data  management  other  then  commercial  DBMSes.  Careful
consideration shows, however, that none of them are acceptable for the proposed task. PostgreSQL
possessed  all  limitations  of  commercial  SQL  packages.  The  non-SQL  systems,  leaded  by
BerkleyDB, do not offer the required integrity and can be viewed only as a set of blocks out of
which the data management system could be built. The BerkleyDB in particular also shows heavy
performance  problems  when  operating  simultaneously  on  multiple  indices.  The  majority  of
commercial and non-commercial ‘embedded’ databases is based on Dbase and carries unacceptable
limitations on the amount of stored data. Most of them also do not provide the desired high-level
features like remote access or security. 

Data management requirements for generic data are relatively standard. Any commercial or
academic institution operating with large amounts of data would share similar needs. This applies to
biotechnology in particular because over the past decade it vastly outgrew the abilities of traditional
DBMSes.  This  also  applies  to  economy,  medicine,  meteorology,  geography,  astronomy,
oceanography and many other fields where the amount of accumulated data is huge, and typical
analysis tasks require retrieval (or storage) of its substantial portions. 

We have formulated a set  of  requirements  for a Data Management  System suitable for
academic  and  commercial  research  applications.  Among  them  we  prioritized  structured  data
storage, versatile indexed access, high operating speed, unlimited data volumes, multi-user network
access,  availability  over  multiple  platforms,  natural  representation  of  the  data  in  various
programming languages, light programming model, security at the level of individual objects and
maintenance–free operation on inexpensive hardware. Having the list of requirements, we designed
and implemented the SciDM.
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Design Principles

High Performance

Speed of operation has been considered the first priority principle. Wherever other features
could  be  reasonably  compromised  for  speed,  the  faster  solution  was  chosen.  If  the  faster
implementation  required  a  heavier  design,  the  faster  implementation  was  chosen.  If  the  faster
implementation required more resources from the executing system, like more memory, the faster
implementation was chosen, as long as the increase in speed was higher than the increase in the
system cost. If the faster implementation required more storage space, the faster implementation
was chosen. 

One of solutions favoring speed over flexibility is the use of compiled data access methods
instead of dynamic ones. The complied access methods allow for compile-time optimization and
thus highly increase the speed.  However, this  makes  dynamic  allocation of new types  a  much
heavier task. In the current implementation of SciDM, adding a new type involves changing the
schema, rebuilding the data manager  executable,  building the schema update tool,  stopping the
server, running the schema update tool and starting the updated server instead of the old one. All
existing data is preserved, and a new type is added.  In the future this procedure is going to be
replaced by dynamic loading of complied schema component into the running server along with
automatic  creation  of  persistent  structures  on  the  disk.  This  is  quite  a  burden,  but  the  access
methods are executed much more  often than the schema changes occur. The accumulated time
saved by the invocation of compiled access methods vastly covers the time overhead for the schema
updates.

Unlimited Storage

The volume of data that needs to be stored is hard to estimate upfront. Any ‘reasonable’
limit seems to become outdated very quickly. The limitations imposed by the computer technology
also tend to weaken very quickly and should also be put out of consideration. 

The requirement of unlimited storage has two aspects. First is related to the nature of object
identity. Every object in the system should have an identity inherent to the object (not derived from
a particular relation between the object and the system, such as physical address). Such identity is
represented as identifier – a data structure operable by the computer system. The unlimited number
of objects in the system requires an identifier of an unspecified (or variable) size. This imposes a
limitation on performance, since operations on the object IDs are the most frequent in DMS, and a
variable length ID takes more time to process then a fixed length one. For the time being, we
assumed that 64-bit object identity is enough for all imaginable practical applications. We reserved,
however, a possibility to increase the ID size to 128 (or any arbitrary number) bits. So far 64-bit ID
was more than enough for all applications of SciDM.

The second aspect  is  related to  the  underlying  operating environment.  Many operating
systems have limitations on the file or  volume size; besides,  the hardware has certain capacity
limits. Coping with this restrictions means that the low-level data storage should be designed in a
way that  allows spanning the data  over  multiple  files  and multiple  storage volumes.  On some
systems it requires also caching limited resources such as file handles.  
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Extensibility

The extensibility can be viewed from several  different perspectives.  First  is operational
extensibility:  the user should be able to add new types of data to the existing database. This is
trivial  and  available  in  most  commercial  DBMS  packages  as  basic  functionality.  In  SciDM,
however, the schema update is less trivial because it involves generating, compiling and loading the
access methods code into the server. It must be noted, however, that schema design, especially in
dynamic research areas, always contains certain flows and deficiencies. Restructuring the database
is not always affordable when such a deficiency is discovered. To suppress negative effect of these
situations,  all  objects  in  SciDM  are  supplied  with  a  set  of  methods  allowing  creation  and
manipulation with any number of custom attributes. These attributes, named dynamic attributes, are
associated with a particular object only, and do not affect the schema structure. When the schema
lacks certain features, they still can be added and used through attaching dynamic attributes to the
objects of interest.

The  dynamic  attributes  provide  an  implementation  buffer  between  the  demands  of  the
client application designer and the database schema. The client application may use the custom
attributes  as  it  would  use  the  static  ones.  When  a  set  of  dynamically  implemented  attributes
stabilizes  through R&D cycle,  the  changes  may be  promoted  into  the  static  database  schema.
SciDM provides services for collecting statistics on the dynamic attributes, which may facilitate
such promotion.

Dynamic attributes are also particularly useful when only a small subset of objects of a type
s associated with additional information; they are a good alternative to reflecting these peculiarities
in the database schema. In this case dynamic attributes may be used as add-on annotations to some
of  the  objects.  This  inspired  naming  the  interface  for  manipulating  dynamic  attributes
‘Annotatable’.

Another  aspect  of  extensibility  is  the  extensibility  of  server  functionality.  Certain
operations involving large volumes of data are often common and trivial enough to be performed
on the server, without transferring the data to the clients. Good examples of such operations are
manipulations with sets of object IDs. To avoid unnecessary data transfers, these operations are
implemented as a server component. The server component is a subsystem with a defined interface
capable of accessing and manipulating the data directly on the server. Server component exports its
own methods through CORBA. In the basic SciDM, the  IdSetManager, the  RightsManager, the
LockManager and the Type system itself are implemented as server components. Any number of
other  components  may be added.  Currently adding a  component  requires  rebuilding the server
executable. In the future this will be replaced by dynamic loading of the compiled component code.

High Accessibility

Different R&D communities use diverse hardware and diverse operating systems. Every
field, if not every laboratory, has certain preferences in programming languages and tools. Even
within the same institution different people often use different platforms.  The data management
system should make the data available through all these variations. Among few technologies that
allow such interoperability CORBA is the most  standard, widely accepted and most  developed.
Many CORBA providers over past years achieved both stabile operation and good performance.
CORBA operates  through all  more-or-less  standard platforms  and operating systems,  and have
bindings to the majority of programming languages. These bindings are represented in constructs
natural to the language and do not require learning or creating a translation layer around data access
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methods. CORBA does not require any prerequisites on the system it operates besides a network
protocol running. 

These features made CORBA the only choice for using as a transport mechanism between
SciDM clients and the server. We have used three different ORBs in the implementations of server
and four in the implementation of clients. One of them, namely TAO, was able to inter-operate only
with  clients  using  the  same  ORB;  the  other  two,  namely  omniORB  and  MICO,  have  shown
excellent inter-operability between themselves, and with ORBIX and FNORB. Current production
version of SciDM server is built using the omniORB.

Light Programming Model

A typical  production  cycle,  involving  collection  of  requirements,  design,  prototyping,
evaluation, production development, testing, quality control and support, usually makes little sense
in the research community. There, a realistic cycle could include only two stages: prototyping and
evaluation. These steps typically cannot be delegated to some trained person who knows how to
program a particular data retrieval system: they have to be done on a daily basis by a researcher
who formulates the questions. This means that to be efficient, the researcher (or developer) should
have the data under their fingertips, in a form natural for them and not for the data storage system;
and operations on the data should be expressed in a language natural for the data. CORBA serves
the purpose of bringing remote objects into a familiar operating environment, but does not pose any
limitation on the nature of the data: the data representation model is to be chosen while designing
the DMS.

We found  an  object-relational  model  of  data  representation  reasonable  to  satisfy  the
demands  of  both  research  and  production.  The  details  of  object-relational  representation  are
outlined below, in the  Features section.  Within SciDM client  applications,  the data  objects are
represented as natural constructs of the client language: objects in C++ or Java, structures in C,
instances  in  Python,  and  blessed  objects  in  Perl.  The  user  deals  not  with  some  special  data
manipulation constructs like SQL queries or datasets, but directly with objects of his/her interest,
possessing meaningful features as declared in the data schema.

Low Resource Consumption

The last important consideration is the cost of the hardware system on which the SciDM
server is running. For the academic communities and in many cases for commercial ones as well,
this is a very important problem. The goal of our design was to avoid any special requirements for
the hardware: the system should perform well on a standard single-processor PC computer. We
considered that  making SciDM efficient  on a  standard computer  is  much more  important  then
making  it  scaleable  and able  to  make  use  of  multi-processor  architecture.  Also we  considered
important that SciDM could serve data in a single-computer setup, so it has to be able to stay as low
as possible on the resource (memory and CPU) consumption to allow other applications (including
client ones) to run efficiently.

Another  important  consideration  relates  to  performance.  As  we  already  mentioned,  a
typical task we are addressing involves an access to a large set of objects at a time. Allocating and
instantiating object representations for every object of such a set on the server would consume a lot
of CPU time and memory. Such consumption is unnecessary, because even if the client processes
the entire set of objects, they do not have to co-exist in the server’s memory – the client accesses
them one by one, so only the actually accessed object(s) needs to be present at any given moment.
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To take advantage of this and to avoid instantiation of every accessed object on the server, the client
accesses the data through special Accessor objects. The Accessor can be viewed as a window that
shows one data object at a time and makes all methods associated with that object available. The
Accessor can be switched (tuned) to any object of a given type by invoking  the ‘access’ method
with the object ID as a parameter. So when browsing through a set of objects, the client uses a
single  Accessor and tunes it sequentially to all objects in the set. If the client must retain some
object available, it may obtain an additional Accessor and keep it pointing to the object of interest,
while  another  Accessor goes  through  the  set.  There  is  no  limit  on  the  number  of  Accessors;
however, instantiating too many of them degrades the performance in the same way as instantiating
of many objects would. 

The  Accessor mechanism  is  used  universally  through  SciDM.  Actually,  all  data
manipulations are done through Accessors, including retrieval of metadata and handling of the type
contents (see below). 

Features

Object – Relational Model

Data entities are represented as Objects. Each object possesses an Identifier (ID), which is
system-wide,  unique,  and never gets reused.  Each object  has a set  of  Methods it  is  capable to
perform. The objects are classified into Types (similar to RDBMS relations), so that objects with the
same set of methods belong to the same type. A set of Type layouts comprise the database Schema. 

Typical  methods  are  attribute  access  methods.  They  have  a  standard  syntax  of
get(AttributeName) and set(AttributeName). Each Attribute is a key–value pair, where “key” is an
attribute’s name (character string) and “value” belongs to any DATATYPE (described below). 

The Types themselves are objects of a special type, called “Type”. An object of the type
‘Type’ serves as container for all objects belonging to it. The Type object has methods for creating,
destroying and enumerating objects as well as methods for retrieving metadata (lists of attributes,
etc.). Each type has a Type ID and a Type Name (string). The type ‘Type’ contains itself as one of
objects.

As  mentioned  above,  all  objects  on  the  server  are  accessible  through  Accessors.  An
Accessor is a flyweight adapter to an actual object. The  accessor can be tuned to any particular
object of a given type. The  accessors are typed: an  accessor for objects of a certain type cannot
access objects of another type. The Type objects serve as factories for accessors.

Extensible Objects

Along with standard attributes defined by type,  each object can possess any number of
custom (dynamic) attributes. The custom attributes are accessible through dynamic attribute access
methods:  get[AttrType](AttrName) and  set[AttrType](AttrName,  Value).  For  convenience  of
operations,  methods  for  enumerating,  testing,  and  deleting  attributes  are  also  available.  The
dynamic attributes may contain only data of certain kinds (see below).
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Fast Data Storage and Retrieval through use of: 

Generated Code  

Benefits and drawbacks of compiled data access methods versus dynamic ones have been
discussed  earlier.  C++  code  for  data  access  methods  is  generated  for  a  particular  schema  by
employing  C@™  (cat)  generative  technology  and  then  compiled  by  a  C++  compiler  into  an
executable. The code optimization performed by the C++ compiler allows for a faster operation in
comparison with dynamic access methods.

Bulk Methods

Typical data management tasks on large data sets are retrieval and storage of attributes of
vast numbers of objects. Sending them over a network one by one hits the packet transfer rate limit.
To  pack  many  data  transfer  events  into  fewer  network  transactions,  the  bulk  methods are
introduced. The Bulk is a data structure that contains arrays of selected attributes for a selected set
of objects. The accessor’s getBulk and setBulk methods allow storage and retrieval bulks of data at
once.

Fine-Grain  Indexing  by  Entire  Attribute  Content  and  by
Words in Text Attributes

Two methods  of  indexing are  provided  via  SciDM. First  is  conventional  index by the
attribute contents, allowing retrieval of sets of objects whose attributes fully or partially match a
query. Any attribute of a type may be indexed by this method.  Another is context index, providing
for retrieval of sets of objects in which a given (or any) text attribute contains a word completely or
partially  matching  the query.  Text  fields  are  broken into  words according  to  Standard English
grammar. (In the future, more flexible tokenizers may be introduced.) The latter indexing method is
valuable for many applications that use datasets with elements of natural texts. 

Custom Data Types of Unlimited Complexity

Objects maintained by SciDM contain attributes. The attributes are named elements of data
of particular  structure.  To describe the structure of the attribute content,  SciDM data definition
system is used. It defines a few atomic DATATYPEs and rules of their combination into the complex
ones.

Enforcing the DATATYPE system on the attribute content serves the goal of keeping user-
defined data structure through the storage/retrieval cycle. When the attribute content is obtained
from the server, it  retains its structure in the form of CORBA representation of data elements,
structures  and  arrays  (possibly  nested).  ORB  automatically  maps  CORBA  data  structures  to
constructs natural for the programming language being used. These constructs can immediately be
used in a way natural for a programming environment. 

Along  with  translating  structural  representation  of  data  into  constructs  natural  for  a
programming language, storage of structured attributes allows to introduce methods for meaningful
operations on the attribute content on the server. This specifically applies to situations when an
attribute stores arrays. Such arrays may potentially be very long, and retrieving or saving the entire
content  could be undesirable.  Server-side knowledge on the structure allows implementation of
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operations on array slices, such as retrieval, replacement, insertion or deletion of a slice. This is not
done in the current version of SciDM, but is planned for the future versions.

Integrated Support for Object Sets

Analyzing and structuring large amounts of data always involves operations on object sets.
The ability to select a set of objects, make it persistent, retrieve saved sets, compare sets or perform
Boolean operations on them is critical for many data processing tasks. Because of very common
nature of such operations, SciDM provides methods for object set manipulation and persistence on
the server. For every user-defined type,  the SciDM schema compiler creates a hierarchy of  Set
types. An object of a set type of the first level is capable of holding a collection of IDs of objects of
an underlying type. An object of a set type of the second level can hold a collection of IDs of the
above-described ‘set’ objects. This chain continues up to a certain Set Nesting maximum (64 in the
current design). 

The Set type is a legitimate type with methods for creating, destroying and enumerating the
set objects. The Set object is a legitimate object that contains methods for manipulating the set
contents  (adding,  removing and retrieving contained IDs)  and also can contain any number  of
dynamic attributes. The Set types are named after their primary type with the addition of nesting
level in curly braces (thus, type ‘set of (Employee)’ would have the name “Employee{1}”; ‘set of
(sets of (Employee))’ would have the name “Employee{2}”, and so on).

Along with persistent sets, SciDM supports methods for manipulating with temporary sets
of IDs – through the IdSetManager component. This component serves the need of manipulating on
the object ID sets right on the server without transferring them to clients. It is particularly useful
when combining results of multiple search requests and also when the actual IDs are not needed on
the  client  (only  the  content  is  needed).  The  IdSetManager  provides  methods  for  creating  and
destroying temporary ID sets and for performing Boolean operations on them. It is integrated with
types, persistent sets and with bulk operations in a way so that the IDs retrieved or used by these
operations can be stored in (or taken from) the ID sets instead of transferring to and from the client. 

Architecture

Life Cycle

The life cycle of a particular incarnation of SciDM server includes the following steps: 

- Schema Definition 

- Building of the Server

- Starting the Server

- Working with Server

Once defined, the schema does not freeze forever. When a change is needed, appropriate
changes should be made to the schema, and the server should be built again. After that, the old
server should be stopped, the data update utility should run to modify the data according to the new
schema,  and  the  new  server  should  be  started  on  the  updated  data.  For  simple  schema
modifications, which include adding and deleing an entire type, the data update utility is getting
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built automatically together with the new server. Modification of the existing types is not directly
supported (though possible). 

Data Definition, Server Build and Startup

The Schema definition file is a python module. It contains definitions for both DATATYPEs
and Types. Please consult the implementation manual for detailed instructions on how to write the
schema definition. 

The  schema  is  compiled  by  the  schema  compiler  based  on  the  C@™  generative
technology,  and  transforms  into  two  types  of  files:  IDL scripts  and  C++  sources  with  server
implementation. The build process compiles the IDL and C++ code and builds the SciDM server
executable.  Upon  startup,  the  server  executable  searches  the  current  directory  for  a  dataset
structured as defined in its schema. If it does not find one, it creates the dataset  de novo. It also
creates  a  file  with  the  server’s IOR that  is  later  used  by the  clients  to  establish  the  CORBA
connection.

Data Use: Root, Session and Component Subsystems

After the server has started, it is ready to accept the client connections. The clients connect
to  the  server  by  connecting  to  an  object  referred  by  IOR.  This  is  a  root  object,  whose  only
capability is to authenticate the users and issue the  Session objects to them. The  Session object
serves as a factory for all other objects the user may request. The set of these other objects depends
on the Session and gets destroyed when the Session terminates.

The Session provides factory methods for creating instances of the component subsystems.
Currently there are four such subsystems: ‘Type’, ‘IdSetMgr’, ‘LockMgr’ and ‘RightsMgr’.  The
Type subsystem provides  basic  data  access  and reflection functionality  for  persistent  data.  The
IdSetMgr provides methods for server-side operations on sets of object IDs. The  LockMgr is the
interface  for  user-level  control  on  sets  of  locked  objects.  The  RightsMgr is  the  interface  for
manipulation with object  protection settings.  The instance of a subsystem is obtained from the
Session by invoking the Session’s ‘open’ method with the subsystem’s name as a parameter. The
Session  may  open  many  instances  of  ‘Type’  simultaneously;  for  the  rest  of  the  subsystems,
subsequent calls to ‘open’ would return the same instance of the component.

Along with the ‘open’ method, the session also exports series of methods for the lifecycle
controlling. These are ‘setTimeOut’, ‘setPingCallback’ and ‘pong’. The ‘setTimeOut’ sets a time
interval  after  which  the  server  considers  the  session  idle  and closes  it.  The  ‘setPingCallback‘
registers with the server the address of the remote PingCallback interface. This interface contains a
single method named ping. The server uses this interface for discovering dead clients: if no client
shows no activity for a timeout period, the server calls the ping method of registered callback and
expects to get the pong called within the timeout. If this does not happen, the client considered
being dead and the session gets closed.

Objects and Types

The Type component subsystem provides methods for managing persistent data storage,
including data access and manipulation methods, as well as reflection. 
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Identifiers

SciDM generates an ID for an object at the time of the object’s creation. The object ID
uniquely identifies every persistent object within the instance of SciDM. The object ID is never
reused: after the object is destroyed, the ID is forgotten forever. The object ID is an opaque piece of
data, and in the current implementation of SciDM it is represented as a 64-bit integer. In the future
versions, representation of OID may change. 

Accessors

The client accesses persistent data objects through the Accessor interface. The accessors are
typed,  which  means  a  certain  accessor  may  be  used  to  access  objects  of  a  certain  type  (thus
possessing the same set of methods). An object returned by a Session’s open method called with
parameter ‘Type’ is an accessor to an object of type ’Type’. Accessors to other objects are created
through invoking the openAccessor method of the corresponding type.

Accessors are capable of the following:

- accessing an object by invoking the ‘access’ method with ObjectID as parameter. The access
method  notifies  the  client  about  a  failure  by  throwing  an  exception.  The  access  may  fail
because an object for a given ID does not exist, the user does not have the access rights to the
object, or the object ID is of an incorrect type (does not match the accessor’s type). Repeated
access calls  with the same ObjectID revalidate the accessor. This operation may fail  if  the
object was deleted, or if the access rights have been revoked since the last call.

- checking validity of an accessed object (method ‘valid’). An accessor is invalid right after the
creation by openAccessor invocation, or if an object gets deleted while the accessor points to it,
or if the user’s access rights for an accessed object get revoked. 

- retrieving an ID of a currently accessed object. This is done through the ‘current’ method,
which returns OID. This method may throw an exception if called on an invalid accessor.

- creating a copy of an accessor, pointing to the same object. This is done by calling the ‘clone’
method. After the cloning, the accessors operate independently.

- destroying itself by invocation of the ’close’ method.

Object Structure: Static and Dynamic Attributes. Annotatables

An interface for an object of any particular type inherits from the  Annotatable interface,
which, in turn, inherits from the Accessor interface. The Annotatable interface contains methods for
manipulating  dynamic  attributes.  Every  object  can  contain  any  number  of  dynamic  attributes.
Dynamic attributes are distinguishable by their names. The values of dynamic attributes could be of
the following types:  OID,  LongLong,  Float,  DateTime,  Char8 and  Octet8.  The former three are
primitive  types:  Object  ID,  a  double  64-bit  integer  and  a  double-precision  floating  point
respectively.  The  latter  three  are  complex  types:  a  structure  representing  date  and  time,  a  8-
character string and an 8-byte array. 

Each dynamic attribute, along with the name and the value, is associated with an attribute
number. The attributes can be accessed either by their names or by their numbers. The Annotatable
interface contains a method for retrieving and storing the attributes,  enumerating the attributes,
checking the attribute presence, obtaining the attribute DATATYPE and removing the attributes. 

The most primitive Type, implicitly defined in any instance of the SciDM server, is the type
Dictionary. An object of the type Dictionary contains no static attributes, so the dictionary is a pure
incarnation of the  Annotatable.  Another implicit  type is  Text.  This type contains a single static
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attribute – text, along with the access methods getText and setText. Data stored in the Text attribute
is a character array of an undefined length (not a null-terminated string). 

The  Annotatable interface contains distinct methods for enumerating dynamic and static
attributes. The DATATYPE retrieval methods work on both dynamic and static attributes.

Along with these methods  for typed access to the attributes,  the  Annotatatable defined
methods for stringified (untyped) access – ‘getAsString’ and ‘setFromString’. These methods also
work on both static and dynamic attributes. 

Types as Object Managers. Type Methods

Object  accessors allow manipulation on the object  content.  Methods for operating with
objects themselves, such as object creation, destruction, and enumeration, are available through the
Type interface. The Type interface also provides methods for accessor creation, navigation over the
Type system, and reflection of the Type’s object attributes, both static and dynamic. Methods of the
Type interface can be subdivided into the following groups:

Object Manipulation:

object creation methods: ‘create’, ‘createRange’, and ‘createIdSet’. The ‘create’ method just
creates a new object and returns its ID. The ‘createRange’ is a bulk version of ‘create’ – it
creates a number of objects at a time and returns a range (an array) of IDs to the client. The
‘createIdSet’, like ‘createRange’, creates a number of objects, but sends the result to another
destination – instead of passing an array of the new IDs to the client,  it  stores them in the
IdSetManager as a transient ID set, and only passes a handle for this set to the client. The latter
method is particularly useful when inserting ranges of new data into the database: the client
does not have to know the IDs of newly created objects; however, they are needed for data
update operations that come after creation. The IdSetManager keeps these IDs until the client
sends in the actual bulk of data for the newly created objects.

object destruction methods: destroy, destroyRange, destroyIdSet. The first method deletes an
object which ID has been passed as a parameter, from the persistent storage. The second deletes
all objects designated by the passed array of IDs. The third deletes all objects designated by the
IDs stored in the transient IDSet; the ID for this IDSet is passed to this method as a parameter.

object  enumeration  methods:  ‘rewind’,  ‘getNext’,  ‘getNextN’  and  ‘getNextIntoIdSet’.
Enumeration is performed in the style of unidirectional iteration. This is a state-full operation:
the  Type object  remembers  the  last  object  obtained  during  the  iteration  and  is  capable  of
returning the next one. The ‘rewind’ method positions an internal pointer at the ‘first’ object in
the type. After the rewinding, subsequent calls to ‘getNext’ are guaranteed to return the entire
content of the type. The ‘getNext’ returns an ID of the next object and advances the internal
pointer by one position; the ‘getNextN’ returns a number (passed as a parameter) of IDs as a
range,  and  advances  the  internal  pointer  by this  number.  The  ‘getNextNIntoIdSet’ stores  a
number of IDs in the transient set kept by the IdSetManager. It also advances the pointer and
returns  the  number  of  objects  retrieved.  When  the  type  exhausts,  the  ‘getNext’ signals  by
returning a special value of INVALID_ID. The getNextN returns an empty array of IDs, and the
’getNextNIntoIdSet’ returns zero as the number of retrieved objects. 

container methods:  ’getSize’ and ‘contains’. The ‘getSize’ method returns the number of the
objects of a Type defined in the server’s Schema. The ‘contains’ method checks whether the
passed ID corresponds to a valid and alive object of this Type.

Reflection:   A set  of reflection methods allows obtaining a list  of  static attributes for a type,
properties  for  each  of  the  attributes,  and  information  on the  indices  available  for  the  type.  In



Scientific Data Manager (SciDM) Page 16 of 24 

addition  to  that,  the  Type reflection  allows  obtaining  aggregate  information  on  the  dynamic
attributes used by objects of this type, including their full list and the numbers of objects using
them. The reflection will be discussed later in more details. 

Context Search: the context search methods allow the selection of objects that contain the query
words in their  text attribute.  Two flavors of the context  search are available:  those passing the
resulting ID set to client (contextSearch), and those storing the results in a transient set managed by
the  IdSetMgr (contextSearchIdSet).  In addition to that,  the method is available for counting the
objects matching the search request (contextCount).

Typesystem Navigation: two methods are available for testing the position of the current type in
the  Set  types  hierarchy:  ‘getBaseType’,  returning  the  base  (non-set)  type,  and  ‘getNestLevel’,
returning the set nesting level of the current type. For the base type itself, the ‘getBaseType’ would
return its own ID (the same as would be returned by ‘current’), and ‘getNestLevel’ would return
zero.

Another group of methods allows obtaining the type for an arbitrary object ID, obtaining the type
ID for a set of objects of a given type, and obtaining the type IDs for the elements of a set of a
given type.

Datatype Reflection: this group of methods allows obtaining the list of all Datatypes defined in the
system and discovering the structure of each individual datatype.

Types as Objects

The Types are available to the client through the Type accessors, and thus are representing
the objects of the type ‘Type’. Each type has a unique Type ID and carries the same set of methods
as any other type. The Type accessors possess all properties of any accessor: they can be tuned to
any Type object by using the Type ID, they can return the ID of a currently accessed type, etc. In
addition to the access-by-ID method, the Type accessor presents one more: ‘accessByName’. Each
type has a unique name, defined in the database schema. The ‘accessByName’ method tunes a Type
accessor into a named type. The name of the current type may be obtained by calling ‘ getName’
method. (please note that there is no corresponding set method: a type cannot be renamed). Calling
‘accessByName’ (‘Type’) positions the accessor at the Type object ‘Type’, which is a container of
all types in the system, including itself. 

The  creation  and  destruction  methods  are  not  operational  for  the  Type  object  ‘Type’,
because SciDM does not support dynamic type creation and destruction. The rest of the methods in
the  type interface, however, are operational, including the object enumeration ones. This allows
discovery of the list of available types by the client.

Implicit Set Types

With a definition of the object type in the database schema, the hierarchy of the set types is
getting defined implicitly. Set types are named after their basic type, with the addition of the set
nesting level in the curly braces. The type “set of Text” would have a name ‘Text{1}’ (nest level 1).
The type “set of sets of Text” would have a name ‘Text{2}’. The maximal nesting level currently
supported by the SciDM is 64.

While enumerating objects of the type ‘Type’, only non-empty set types appear. Empty Set
types are not listed to avoid unnecessary crowding. Such ‘hidden’ empty Set types are accessible
through invocation of the ‘accessByName’ method on a  Type  accessor:  typeAcc.accessByName
(“BaseType{N}”)



Scientific Data Manager (SciDM) Page 17 of 24 

An object of the Set type is a collection of object IDs. The sets are homogenous, so that
only objects of the same type can constitute a set. The type for the objects contained in a set is
named set element type. A Set object provides methods for manipulating on the set contents. These
methods include: checking the set size; adding object IDs to the set;  retrieving the set content;
checking for the presence of an ID in the set; removing elements from the set. The method for
obtaining the type of a set element is also available in the set interface. Set content operations are
available in by-element and aggregate forms with the use of both client-side ID arrays and server
side persistent ID sets.

Because the set object is a normal object whose interface inherits  Annotatable, it can be
supplied with any set of dynamic attributes.

Attributes

The object signature, which is determined by the schema, consists of the methods. It is
useful, however, to present the object contents in terms of attributes. An attribute is a named data
entity accessible through  set and  get methods.  The Database schema is formed in terms of  the
attributes rather than methods. Each attribute name is associated with a unique attribute ID. The
attribute  ID  binds  the  attribute  name  with  a  particular  DATATYPE  of  the  attribute’s  value.
Attributes of the same name within a type always share the same DATATYPE for their values.

Static Attributes 

Each type defines a list of static attributes, which appear in every object of the type. They
are accessible through attribute-specific static methods. The static attributes can be read-only, then
only ‘get[AttributeName]’ method would appear in the object interface. It could be write-only, then
only ‘set[AttributeName]’ method appears, or read-write, in which case both set and get methods
would be present. The access rules for the attributes (WRONLY, RDONLY or RDWR) are defined
by the schema.

The list of static attributes is available in both Type and Object interfaces through the use of
‘getStaticAttributes’ method.

Dynamic Attributes

Along with the type-specific static attributes, any object can contain an arbitrary list  of
dynamic  attributes.  Methods  for  manipulating  the  dynamic  attributes  are  inherited  from  the
Annotatable interface. These methods, in contrary to the static attribute access ones, are dynamic
and not bound to a particular attribute name. Instead, the attribute name (or attribute ID) is passed
to them as a parameter.

The dynamic attributes could contain data only of a certain DATATYPEs. They include:
ObjectID, LongLong Integer, Float, DateTime, Char8 and Octet8 DATATYPEs. Because CORBA
does not  allow polymorphic methods,  for every DATATYPE there are specific access methods.
They include:

get-by-name methods: getObject, getInteger, getFloat, getDatTime, getChar8, getOctet8;  

set-by-name methods: setObject, setInteger, setFloat, setDatTime, setChar8, setOctet8; 

get_by_id methods: getObjectById, getIntegerById, getFloatById, getDatTimeById, 
getChar8ById, getOctet8ById;  
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set_by_id methods: setObjectById, setIntegerById, setFloatById, setDatTimeById, 
setChar8ById, setOctet8ById

Along  with  the  accessing,  the  dynamic  attributes  may  de  destroyed  by  using
‘removeAttribute‘ or ‘removeAllAttributes’ methods; checked for presence by using ‘hasAttribute’
method; listed by using ‘getDynamicAttributes’ method. The DATATYPE for the attribute value
may be obtained by using ‘getAttributeDatatypeByName’ and ‘getAttributeDatatype’ methods.

Custom Methods

The database schema contains a construct for declaring custom methods not tied to any
particular attribute. There is, however, no standard way to define a method itself – it must be coded
explicitly in C++, using the internal server data exchange and object access conventions. The body
of the method is placed in a special location and is later picked up by the server build process.
Currently there is no standard API for writing method extensions; however, it may be defined in the
future. The custom methods are particularly useful when several attributes are interdependent and
have to be kept synchronous. 

DATATYPE Definition 

The DATATYPE definition system offered by SciDM allows the construction of custom
DATATYPEs out of a number of primitive ones.

Primitive Types

The atomic DATATYPEs used in SciDM are:

- character;

- octet (8-bit value); 

- short (16-bit), long (32-bit) and longlong (64-bit) integer numbers; 

- real (double precision floating point) number; 

- Object identifier 

Along with an atomic DATATYPE, the Enumerations can be defined and used in a complex type
construction as well as directly as an attribute DATATYPE.

Constructors for Complex Types

The rules for generating a new DATATYPE out of an existing one include:

- aliasing (renaming). Any DATATYPE may be given a new name. 

- array construction. Any DATATYPE may be used as an element of an array; the size of the array
may be fixed or variable. 

-  structure construction.  The existing types may be put in a ‘structure’, which is a list  of the
named values. The size of the structure is arbitrary; the names of the structure elements must be
unique within the structure.

A DATATYPE of any complexity can be constructed by recurrent application of the above rules.
Many of  the  widely used DATATYPEs are the complex  ones:  for instance,  text  is  an array of
characters of an undefined size.
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Bulk Operations

The  bulk  operations  allow  storage  and  retrieval  of  mass  amounts  of  data  in  a  single
transaction. The  Bulk is defined as a data structure containing arrays of selected attributes for a
selected  set  of  objects.  It  can  be  viewed  as  a  matrix,  with  the  columns  corresponding to  the
attributes and rows - to the objects. The bulk may contain all attributes for a set of objects, some
attributes, or even a single attribute. It may also contain attributes for a single object, many objects,
or even all objects of a type. The size of the  bulk in practice is limited by the network and the
operating system. A practical size that does not seem to cause trouble on conventional systems is up
to a few megabytes.

There are two major bulk operations: ‘setBulk’ and ‘getBulk’. Both exist in two flavors:
those passing object IDs between the server and the client, and those using the IdSetManager for
the ID storage. The latter ones are named ‘getBulkIdSet’ and ’setBulkIdSet’, respectively. The bulk
access methods are members of the Object Accessor interface (despite the fact that they are not tied
to a particular object).

The list  of attributes passed or retrieved in the bulk operation is controlled through the
mask parameter. The mask is an array of bytes where each byte corresponds to an attribute; setting
it to 0 or 1 disables or enables the presence of the attribute in the bulk.

The Set accessor also provides bulk operations. The set’s bulk is an array of arrays of the
object IDs. The Set’s ‘getBulk’ and ‘getBulkIdSet’ operations extract contents of the sets identified
by the passed IDs. The Set’s ‘setBulk’ and ‘setBulkIdSet’ fill the passed sets with data.

Text-Mode Operations

In addition to the typed attribute access, the generic methods are provided for manipulating
attributes in the form of ACSII strings. The string-style access is slower because the server does the
conversion to and from ASCII representation. Using this style reduces the development effort for
applications that do not require extreme operation speed, like data browsers or other UI tools. These
methods are especially useful  for generic tools intended for the use on various unspecific data
layouts.

The  Annotatable interface presents two such methods: ‘getAsString’ and  ’setFromString’.
An attribute name is passed to these methods as a parameter. They are operational on both dynamic
and static attributes. To encode complex attribute structures or to specify the type of the argument
where it is needed, a special syntax of tagged brace expressions are used.

Currently  there  are  no  string-style  select  methods,  but  they  may  appear  in  the  future
versions.

Indexed Access:

The indexed access to the data is delivered through two types of select methods: select by
attribute content,  and context  selection.  The indices  for  each type  are  declared in  the  database
schema. 
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Attribute Indices and selectBy Methods

Any fixed-length attribute or their combination can be used for the content indexing. The
content  index allows selection of  the  objects  where a  given set  of  attributes  fully  or  partially
matches  the  query.  The server  build process  generates  appropriate  selection methods  for  every
declared index. These methods are available in the object  Accessor interface. The result  of  the
invocation of a selection method is a set of IDs of objects matching the query. This set may be
empty if no matching objects exist. 

Each index declared in the database schema consists of the index name and the list  of
attributes by which the index is build. Selection methods are named after the index names. The
arguments for the selection methods are lists of values for the indexed attributes. The syntax is
defined to distinguish full and partial matches. 

The list of object IDs obtained as a result of the indexed search may be either passed to the
client, or retained on the server within the transient ID set, managed by IdSetManager. For each
index,  two  select methods  are  generated  for  these  two  different  destinations:
‘selectBy[IndexName]’ and ‘selectIdSetBy[IndexName]’.

The indices are maintained through all operations with the server, and are updated for every
change in the data. This provides the user with the convenience of continuous data consistency for a
slight performance price.

Context Indices and contextSearch/contextCount Methods

The context index is available for the text fields. It  allows selection of the objects that
contain in the  given attribute the words fully or partially matching the query. The context search
methods are available through the Type Accessor (unlike the content selection methods, available
through the Object Accessor). The fields that are contextually indexed are declared in the database
schema. The context index can be maintained only on the attributes of the DATATYPE ‘text’.

There are two methods for the context search: ‘contextSearch’ and ‘contextSearchIdSet’.
The former passes a list of IDs of the objects that match the search criteria to the client; the second
one stores them in the transient ID set on the server. Particular attributes on which the selection
should be performed are passed to these methods as parameters. 

In addition to the context search methods, the ‘contextCount’ provides a way to obtain the
number of objects matching a specific context query without retrieving their IDs. 

For every operation that involves a contextually indexed attribute, the index gets updated.
This  operation  may  be  costly,  especially  when there  is  a  need  for  storing  relatively long text
fragments. To allow the user flexibility to update or not the context index for a particular attribute,
the context indexing control methods are available through the  Session interface. These methods
allow disabling or enabling the context indexing for the attributes of particular types. The context
settings are session-wide.

Reflection

The name ‘Reflection’ refers to a set of methods available in  the various interfaces that
allow SciDM client  to discover the structure of data stored on a particular  SciDM server. The
reflection is useful for applications not tied to some particular schema, like generic data browsers or
editors. The reflection methods of SciDM allow obtaining lists of types, lists of objects for every
type, lists of attributes and indices for every type, lists of static and dynamic attributes for every
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object,  as  well  as  properties  of  each  individual  attribute  including  its  read/write  state  and the
DATATYPE. It also allows obtaining the list of DATATYPE and the structure of every DATATYPE.
The reflection methods are spread over various interfaces of SciDM. All of them were discussed in
the above sections. Here is a brief summary:

To obtain Use interface Use methods

List of types Type Accessor (tuned to type  
‘Type’)

rewind / getNext(N)

List of objects for a type Type Accessor rewind / getNext(N)

List of type’s static attributes Type Accessor getStaticAttributes; 
getAttributeName 

List of dynamic attributes used 
by a type’s objects

Type Accessor getDynamciAttributes

Attribute properties for type X Type Accessor getAttributeInfo

Attribute datatype for type X Type Accessor getAttributeDatatype

Indices for type X Type Accessor getIndices, getIndexName

Index structure Type Accessor getIndexFields, getIndexInfo

Dynamic attribute list for an 
object

Object Accessor getDynamicAttributes, 
getAttributeName

Static attribute list for an object Object Accessor getStaticAttributes, 
getAttributeName

Attribute datatype for an object Object Accessor getAttributeDatatype, 
getAttributeDatatypeByName

All datatypes in the server 
instance

Type Accessor getAllDatatypes

Datatype structure Type Accessor unwrapDatatype

Data Integrity 

SciDM is designed in the assumption that rare events of hardware or other failures are not a
sufficient condition for a continuous transaction integrity support. There are, however, two practical
cases where the integrity should be considered. 

First is the case of simultaneous modification of the same data by two or more clients. This
may confuse the client applications, thus leading to a loss of data correctness. The assumption that
particular pieces of data do not change between two sequential write events needs an enforcement.
Such enforcement is provided by the lock mechanism.

Second is the case of object subordination. The situation when the life cycle of some object
is tightly bound to the life cycle of a master object is considerably frequent. This especially applies
if a certain set of objects is tightly bound to a master one. To handle such situations, many DBMSes
use nested tables or similar constructs. SciDM offers the use of subordinate persistent sets. 
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Locking 

The Lock Manager (LockMgr) component  subsystem provides a mechanism for locking
sets of objects. While locked, an object can be modified only by the session that imposed the lock.
Other sessions may access the object or read its content according to their rights, but cannot alter or
destroy it. An alteration attempt results in the  AccessViolation exception. To avoid the deadlocks,
only one object set may be locked by the session at a time. Other objects may be locked only after
the unlock operation is invoked. The unlock operation releases all objects in the currently locked
set. Locking and unlocking is performed through the use of LockMgr’s ‘lock’ and ‘unlock’ methods.

An attempt to lock a set of  objects containing already locked ones would result  in the
AccessViolation exception. The  LockMgr also offers the alternate lock method called ‘lockSync’,
which waits until all requested objects become available for locking or until the expiration of the
timeout.

The  LockManager  imposes  a  lock  on  a  heterogeneous  set  of  Object  IDs.  This
heterogeneous  set  must  be  stored  under  the  session’s  IdSetManager.  A  special  method  of
IdSetManager,  ‘createHetero’,  is  used  for  creation  of  heterogeneous  ID  sets  (which  are
homogenous in all other cases). 

Subordinate Objects

The subordinate object is the object whose life cycle is bound to the life cycle of a master
object. The subordinate objects are created automatically when the master objects are created and
destroyed when the master objects are destroyed. The subordinate objects may not be destroyed
separately. An attempt to call  ‘destroy’ method on the ID of a subordinate object results in the
AccessViolation exception. 

Subordinate objects are declared in the database schema by raising the “SUBORDINATE”
flag for an attribute referring to an object of a certain type. If this flag is raised, the following series
of  actions  are  triggered  when a  new object  is  created:  the  object  of  the  type  specified  as  the
attribute’s DATATYPE is created and marked as subordinate; this object’s ID is getting filled into
the attribute’s value. This object exists while the master object is alive. The subordinate attributes
are immutable (read-only) – there are no set methods for them.

There is no limit  on the subordination nesting; recursive subordination, however, is not
allowed for the obvious reasons.

The  subordinate  nature  of  an  attribute  is  reflected  in  the  value  returned  by
‘getAttributeInfo’, which lists all schema flags associated with the attribute.

Protection and Access Rights

SciDM utilizes a concept of “user” to control the access to the data. The system may have
any number of users. For every object in the system, the access rights can be assigned for each user
individually. When an object is created, the rights for this object are assigned according to the
special set of rights possessed by its creator, called the creation domain.

Right Types

The following types of rights are supported in SciDM: 

creation right – allows the creation of the objects, applicable to the types; 
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read  right –  allows  reading  the  object  attribute  values;  when  applied  to  the  types,  allows
enumeration of the type contents;

write right – allows changing the content of the object attributes; 

delete right – allows destruction of the objects; 

seek right – allows enumeration of the object attributes or type attributes

change right – allows changing the rights on the object (analogous to full control)

There are also the two special rights, called ImpersonateUser and InstantiateComponent.
They allow establishing sessions without a password (immediately after the user creation) and to
instantiate the component subsystem respectively.

For every possible pair (user, object) in the system the right of each type is either granted or
not.  An array of rights containing an entry for every right type is called the  rights mask.  Each
element of the rights mask can hold one of the three values: granted, revoked or inherited from the
parent user.

Users

Each user in the SciDM system is represented by an object of the type ‘User’. When the
SciDM server starts  for the first  time,  it  automatically creates the user ‘sys’.  The user ‘sys’ is
created with all possible access rights on all objects at the server startup. It also has a full set of
rights on all objects it creates.

The users are created through the ‘User’ type as usual objects. The users form the tree-like
hierarchy that affects the object right assessment. Each user has a list of ‘children’ and a single
‘parent’. The access rights on every object are inherited from the parents to the children. For a child
object,  some  or  all  of  the  parent’s rights  may be overwritten.  Such overwriting affects  all  the
children of the user and their children as well, up to the leave nodes of the user tree. 

RightsManager 

The RightsManager component provides methods for reading, checking and changing the
rights of the groups of users on the groups of objects. It has the following methods:

get: reads the range of bit masks representing the rights assignments for the given user and the
given set of objects. The granted right (whether inherited or explicit) is represented by bit 1; the
revoked - by 0 in the appropriate position of the mask.

set: assigns certain rights for a set of users and a set of objects. The values for the rights are passed
in the rights mask; the set of right types to assign are passed in the other mask called transparency
mask. Only the right types for which the transparency mask has the bits set to 1 are assigned; the
rest retain their old values.

reset: resets the right types marked in the passed transparency mask to the ‘inherited from parent’
values.

check: checks whether the rights passed in the  mask are granted on the given set of objects for the
current user.
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Server-Side Operations on Object Sets

The IdSetManager subsystem of SciDM provides support for server-side operations on sets
of object  IDs (IdSets).  The data retained in the  IdSetManager is  not  persistent  and exists  only
within the context of the current session. The use of IdSetManager allows for avoiding unnecessary
transfer of arrays of object IDs between the server and the client when they are used only in the
server–side operations. It also releases the client from the responsibility of performing the Boolean
operations on object ID sets.

Each IdSet is a set in the STL sense – it contains each ID only once. The uniqueness of the
IDs within the set is guaranteed by the IdSetManager and can not be violated by any operation.

The IdSetManager can handle multiple ID sets at once. Each IdSet has a unique identifier
that is generated at the time of the IdSet creation. 

Methods

The IdSetManager interface contains methods for creation and destruction of the IdSets, including
one for creating special heterogeneous IdSets used in the locking and rights assessment; content
access and modification methods, including ones for individual elements, for fractions (slices) and
for the entire content of the IdSet, and methods for performing Boolean operations AND, OR, XOR
and  SUB on  the  IdSets.  All  these  methods  in  the  IdSetManager interface  accept  at  least  one
parameter - the IdSet identifier. The Boolean operations accept two SetId operands. All Boolean
operations place the result in a new IdSet, leaving the operands intact. 

Mass Operations Integration

The IdSetManager is tightly integrated with other components of SciDM. Wherever an operation
involves an array of object IDs, two versions of the method are provided: one using a client-side
array of IDs and one using a server-side IdSet.  The  RightsManager and  LockManager use the
IdSets only as a source for object ID lists. All methods using the IdSets are described above. Here
we provide just a brief list of them:

- enumeration, creation, destruction of objects and context search methods of the Type Accessor

- content retrieval and manipulation methods and bulk methods of the Set Accessor

- bulk methods of the Object Accessors

- locking methods of Lock Manager

- rights assessment methods of Rights Manager 
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